Abdullah Al Mammun –Széchenyi István University, Győr, Hungary
Adhie Prayogo –Széchenyi István University, Győr, Hungary
László Buics – Széchenyi István University, Győr, Hungary
7th International Scientific-Business Conference – LIMEN 2021 – Leadership, Innovation, Management and Economics: Integrated Politics of Research – SELECTED PAPERS, Online/virtual, December 16, 2021, published by the Association of Economists and Managers of the Balkans, Belgrade; Printed by: SKRIPTA International, Belgrade, ISBN 978-86-80194-53-0, ISSN 2683-6149, DOI: https://doi.org/10.31410/LIMEN.S.P.2021
Keywords:
Artificial intelligence in the
material handling;
Automation;
Smart logistics;
Rapid Literature Review
Abstract
In this article, the authors are examining the application opportunities of artificial intelligence in the material handling industry. A structured literature review with the help of a mapping study is being conducted in the study to show how the material handling industry can benefit from the implementation of artificial intelligence. The paper will demonstrate how artificial intelligence can assist in transforming material handling processes from manual to autonomous operations impacting greatly the overall efficiency and effectiveness of different industries. The paper is using the Scopus and Science Direct databases to show what are the advantages and the constraints based on the selected articles.

Download file
LIMEN Conference
Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

References
Aaltonen, I., & Salmi, T. (2019). Experiences and expectations of collaborative robots in industry and academia: Barriers and development needs. Procedia Manufacturing, 38, 1151–1158. https:// doi.org/10.1016/j.promfg.2020.01.204
Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Engineering Science and Technology, an International Journal, 22(January), 899–919. https://doi.org/10.1016/j.jestch.2019.01.006
Ammar, M., Haleem, A., Javaid, M., Walia, R., & Bahl, S. (2021). Improving material quality management and manufacturing organizations system through Industry 4.0 technologies. Materials Today: Proceedings, 45(June), 5089–5096. https://doi.org/10.1016/j.matpr.2021.01.585
Anastasi, S., Madonna, M., & Monica, L. (2021). Implications of embedded artificial intelligence – Machine learning on safety of machinery. Procedia Computer Science, 180, 338–343. https:// doi.org/10.1016/j.procs.2021.01.171
Bettany-Saltikov, J. (2012). How to do a Systematic Literature Review in Nursing A step-by-step guide (New ed. Edition). Open University Press.
Briner, R. B., & Denyer, D. (2012). Systematic Review and Evidence Synthesis as a Practice and Scholarship Tool. In D. M. Rousseau (Ed.), The Oxford Handbook of Evidence-Based Management (pp. 112–129). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199763986.013.0007
Dash, R., Mcmurtrey, M., Rebman, C., & Kar, U. K. (2019). Application of Artificial Intelligence in Automation of Supply Chain Management. Journal of Strategic Innovation and Sustainability, 14(3). https://doi.org/10.33423/jsis.v14i3.2105
Deja, M., Siemitkowski, M. S., Vosniakos, G. C., & Maltezos, G. (2020). Opportunities and challenges for exploiting drones in agile manufacturing systems. Procedia Manufacturing, 51, 527–534. https://doi.org/10.1016/j.promfg.2020.10.074
Denyer, D., & Tranfield, D. (2009). Producing a Systematic Review. In D. Buchanan & A. Bryman (Eds.), The SAGE Handbook of Organizational Research Methods (pp. 671–689). SAGE Publications Ltd.
Dhamija, P., Bedi, M., & Gupta, M. L. (2020). Industry 4.0 and supply chain management: A methodological review. International Journal of Business Analytics, 7(1). https://doi.org/10.4018/ IJBAN.2020010101
Fernandes, J., Silva, F. J. G., Campilho, R. D. S. G., Pinto, G. F. L., & Baptista, A. (2019). Intralogistics and Industry 4.0: Designing a Novel Shuttle with Picking System. Procedia Manu, 38, 1801–1832. https://doi.org/10.1016/j.promfg.2020.01.078
Fragapane, G., de Koster, R., Sgarbossa, F., & Strandhagen, J. O. (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. European Journal of Operational Research, 294(January), 405–426. https://doi.org/10.1016/j.ejor.2021.01.019
Fragapane, G., Hvolby, H.-H., Sgarbossa, F., & Strandhagen, J. O. (2021). Autonomous Mobile Robots in Sterile Instrument Logistics: An Evaluation of the Material Handling System for a Strategic Fit Framework. Production Planning and Control, 1–15. https://doi.org/10.1080/0953 7287.2021.1884914
Frommel, C., Körber, M., Mayer, M., Schuster, A., Malecha, M., & Larsen, L. (2019). Autonomous Performing System: Automated and Sensor-Aided Handling of Dry Carbon Fibre Textiles. Procedia Manufacturing, 38, 25–32. https://doi.org/10.1016/j.promfg.2020.01.004
Gonzalez, S. R., Zambrano, G. M., & Mondragon, I. F. (2019). Semi-heterarchical architecture to AGV adjustable autonomy within FMSs. IFAC-PapersOnLine, 52(10), 7–12. https://doi.org/10.1016/j. ifacol.2019.10.003
Gregor, T., Krajčovič, M., & Wiȩcek, D. (2017). Smart Connected Logistics. Procedia Engineering, 192, 265–270. https://doi.org/10.1016/j.proeng.2017.06.046
Hamel, C., Michaud, A., Thuku, M., Skidmore, B., Stevens, A., Nussbaumer-Streit, B., & Garritty, C. (2021). Defining rapid reviews: a systematic scoping review and thematic analysis of definitions and defining characteristics of rapid reviews. Journal of Clinical Epidemiology, 129, 74–85. https://doi.org/10.1016/j.jclinepi.2020.09.041
Herterich, M. M., Uebernickel, F., & Brenner, W. (2015). The impact of cyber-physical systems on industrial services in manufacturing. Procedia CIRP, 30, 323–328. https://doi.org/10.1016/j.procir.2015.02.110
Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2021). Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics, 1(June), 58–75. https://doi. org/10.1016/j.cogr.2021.06.001
Klumpp, M. (2018). Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. International Journal of Logistics Research and Applications, 21(3), 224–242. https://doi.org/10.1080/13675567.2017.1384451
Mahmood, K., Karjust, K., & Raamets, T. (2021). Production Intralogistics Automation Based On 3D Simulation Analysis. Journal of Machine Engineering, 21(2), 102–115. https://doi.org/10.36897/ jme/137081
Metzler, M. J., & Metz, G. A. (2010). Analyzing the barriers and supports of knowledge translation using the PEO model. Canadian Journal of Occupational Therapy, 77(3), 151–158. https://doi. org/10.2182/cjot.2010.77.3.4
Min, H. (2010). Artificial intelligence in supply chain management: Theory and applications. International Journal of Logistics Research and Applications, 13(1), 13–39. https://doi. org/10.1080/13675560902736537
Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2021). UAVs for Industrial Applications: Identifying Challenges and Opportunities from the Implementation Point of View. Procedia Manufacturing, 55, 183–190. https://doi.org/10.1016/j.promfg.2021.10.026
Ng, K. K. H., Chen, C. H., Lee, C. K. M., Jiao, J. (Roger), & Yang, Z. X. (2021). A systematic literature review on intelligent automation: Aligning concepts from theory, practice, and future perspectives. Advanced Engineering Informatics, 47(January). https://doi.org/10.1016/j.aei.2021.101246
Nota, G., Peluso, D., & Lazo, A. T. (2021). The contribution of Industry 4.0 technologies to facility management. International Journal of Engineering Business Management, 13, 1–14. https://doi. org/10.1177/18479790211024131
Pedan, M., Gregor, M., & Plinta, D. (2017). Implementation of Automated Guided Vehicle System in Healthcare Facility. Procedia Engineering, 192, 665–670. https://doi.org/10.1016/j.proeng.2017.06.115
Ponis, S. T., & Efthymiou, O. K. (2020). Cloud and IoT Applications in Material Handling Automation and Intralogistics. Logistics, 4(3). https://doi.org/10.3390/logistics4030022
Reynen, E., Robson, R., Ivory, J., Hwee, J., Straus, S. E., Pham, B., & Tricco, A. C. (2018). A retrospective comparison of systematic reviews with same-topic rapid reviews. Journal of Clinical Epidemiology, 96, 23–34. https://doi.org/10.1016/j.jclinepi.2017.12.001
Schoepflin, D., Koch, J., Gomse, M., & Schüppstuhl, T. (2021). Smart Material Delivery Unit for the Production Supplying Logistics of Aircraft. Procedia Manufacturing, 55, 455–462. https://doi. org/10.1016/j.promfg.2021.10.062
Schröder, R., Aydemir, M., Glodde, A., & Seliger, G. (2016). Design and Verification of an Innovative Handling System for Electrodes in Manufacturing Lithium-ion Battery Cells. Procedia CIRP, 50, 641–646. https://doi.org/10.1016/j.procir.2016.04.198
Setiawan, F. B., Siva, P. M., Pratomo, L. H., & Riyadi, S. (2021). Design and Implementation of Smart Forklift for Automatic Guided Vehicle Using Raspberry Pi 4. Journal of Robotics and Control (JRC), 2(6), 508–514. https://doi.org/10.18196/jrc.26130 508
Tai, K., El-Sayed, A. R., Shahriari, M., Biglarbegian, M., & Mahmud, S. (2016). State of the art robotic grippers and applications. Robotics, 5(11), 1–20. https://doi.org/10.3390/robotics5020011
Thamer, H., Börold, A., Yoga Benggolo, A., & Freitag, M. (2018). Artificial intelligence in warehouse automation for flexible material handling. 9th International Scientific Symposium on Logistics. https://www.researchgate.net/publication/325853660_Artificial_intelligence_in_warehouse_ automation_for_flexible_material_handling
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122(January 2021), 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009
Tranfield, D., Denyer, D., & Smart, P. (2003). Study on and instrument to assess knowledge supply chain systems using advanced kaizen activity in SMEs. British Journal of Management, 14, 207–222. https://doi.org/10.1080/16258312.2014.11517339
van Geest, M., Tekinerdogan, B., & Catal, C. (2021). Design of a reference architecture for developing smart warehouses in industry 4.0. Computers in Industry, 124. https://doi.org/10.1016/j. compind.2020.103343
Weckenborg, C., & Spengler, T. S. (2019). Assembly Line Balancing with Collaborative Robots under consideration of Ergonomics: A cost-oriented approach. IFAC-PapersOnLine, 52(13), 1860– 1865. https://doi.org/10.1016/j.ifacol.2019.11.473
Yan, J., Zhang, M., & Fu, Z. (2019). An intralogistics-oriented Cyber-Physical System for workshop in the context of Industry 4.0. Procedia Manufacturing, 35, 1178–1183. https://doi.org/10.1016/j. promfg.2019.06.074
Yang, J. X., Li, L. D., & Rasul, M. G. (2021). Warehouse Management Models Using Artificial Intelligence Technology with Application at Receiving Stage – A Review. International Journal of Machine Learning and Computing, 11(3), 242–249. https://doi.org/10.18178/ijmlc.2021.11.3.1042
Yuan, X.-M. (2020). Industry 4.0 – Impact on Intelligent Logistics and Manufacturing. In T. Bányai & A. P. F. De Felice (Eds.), Intech. https://doi.org/10.5772/intechopen.90077
Zhang, L., Yan, Y., Hu, Y., & Ren, W. (2021). A dynamic scheduling method for self-organized AGVs in production logistics systems. Procedia CIRP, 104, 381–386. https://doi.org/10.1016/j. procir.2021.11.064
Zhang, Y. (2019). The application of artificial intelligence in logistics and express delivery. Journal of Physics: Conference Series, 1325. https://doi.org/10.1088/1742-6596/1325/1/012085