Abdullah Al Mammun –Széchenyi István University, Győr, Hungary

Adhie Prayogo –Széchenyi István University, Győr, Hungary

László Buics  – Széchenyi István University, Győr, Hungary

7th International Scientific-Business Conference – LIMEN 2021 – Leadership, Innovation, Management and Economics: Integrated Politics of Research – SELECTED PAPERS, Online/virtual, December 16, 2021, published by the Association of Economists and Managers of the Balkans, Belgrade; Printed by: SKRIPTA International, Belgrade, ISBN 978-86-80194-53-0, ISSN 2683-6149, DOI: https://doi.org/10.31410/LIMEN.S.P.2021

Artificial intelligence in the
material handling;
Smart logistics;
Rapid Literature Review

DOI:  https://doi.org/10.31410/LIMEN.S.P.2021.139


In this article, the authors are examining the application oppor­tunities of artificial intelligence in the material handling industry. A struc­tured literature review with the help of a mapping study is being conducted in the study to show how the material handling industry can benefit from the implementation of artificial intelligence. The paper will demonstrate how artificial intelligence can assist in transforming material handling pro­cesses from manual to autonomous operations impacting greatly the over­all efficiency and effectiveness of different industries. The paper is using the Scopus and Science Direct databases to show what are the advantages and the constraints based on the selected articles.

Download file

LIMEN Conference

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission. 


Aaltonen, I., & Salmi, T. (2019). Experiences and expectations of collaborative robots in industry and academia: Barriers and development needs. Procedia Manufacturing, 38, 1151–1158. https:// doi.org/10.1016/j.promfg.2020.01.204

Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Tech­nologies for Manufacturing Systems. Engineering Science and Technology, an International Journal, 22(January), 899–919. https://doi.org/10.1016/j.jestch.2019.01.006

Ammar, M., Haleem, A., Javaid, M., Walia, R., & Bahl, S. (2021). Improving material quality man­agement and manufacturing organizations system through Industry 4.0 technologies. Materials Today: Proceedings, 45(June), 5089–5096. https://doi.org/10.1016/j.matpr.2021.01.585

Anastasi, S., Madonna, M., & Monica, L. (2021). Implications of embedded artificial intelligence – Machine learning on safety of machinery. Procedia Computer Science, 180, 338–343. https:// doi.org/10.1016/j.procs.2021.01.171

Bettany-Saltikov, J. (2012). How to do a Systematic Literature Review in Nursing A step-by-step guide (New ed. Edition). Open University Press.

Briner, R. B., & Denyer, D. (2012). Systematic Review and Evidence Synthesis as a Practice and Schol­arship Tool. In D. M. Rousseau (Ed.), The Oxford Handbook of Evidence-Based Management (pp. 112–129). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199763986.013.0007

Dash, R., Mcmurtrey, M., Rebman, C., & Kar, U. K. (2019). Application of Artificial Intelligence in Automation of Supply Chain Management. Journal of Strategic Innovation and Sustainability, 14(3). https://doi.org/10.33423/jsis.v14i3.2105

Deja, M., Siemitkowski, M. S., Vosniakos, G. C., & Maltezos, G. (2020). Opportunities and challeng­es for exploiting drones in agile manufacturing systems. Procedia Manufacturing, 51, 527–534. https://doi.org/10.1016/j.promfg.2020.10.074

Denyer, D., & Tranfield, D. (2009). Producing a Systematic Review. In D. Buchanan & A. Bryman (Eds.), The SAGE Handbook of Organizational Research Methods (pp. 671–689). SAGE Pub­lications Ltd.

Dhamija, P., Bedi, M., & Gupta, M. L. (2020). Industry 4.0 and supply chain management: A meth­odological review. International Journal of Business Analytics, 7(1). https://doi.org/10.4018/ IJBAN.2020010101

Fernandes, J., Silva, F. J. G., Campilho, R. D. S. G., Pinto, G. F. L., & Baptista, A. (2019). Intralo­gistics and Industry 4.0: Designing a Novel Shuttle with Picking System. Procedia Manu, 38, 1801–1832. https://doi.org/10.1016/j.promfg.2020.01.078

Fragapane, G., de Koster, R., Sgarbossa, F., & Strandhagen, J. O. (2021). Planning and control of auton­omous mobile robots for intralogistics: Literature review and research agenda. European Jour­nal of Operational Research, 294(January), 405–426. https://doi.org/10.1016/j.ejor.2021.01.019

Fragapane, G., Hvolby, H.-H., Sgarbossa, F., & Strandhagen, J. O. (2021). Autonomous Mobile Ro­bots in Sterile Instrument Logistics: An Evaluation of the Material Handling System for a Strategic Fit Framework. Production Planning and Control, 1–15. https://doi.org/10.1080/0953 7287.2021.1884914

Frommel, C., Körber, M., Mayer, M., Schuster, A., Malecha, M., & Larsen, L. (2019). Autonomous Performing System: Automated and Sensor-Aided Handling of Dry Carbon Fibre Textiles. Procedia Manufacturing, 38, 25–32. https://doi.org/10.1016/j.promfg.2020.01.004

Gonzalez, S. R., Zambrano, G. M., & Mondragon, I. F. (2019). Semi-heterarchical architecture to AGV adjustable autonomy within FMSs. IFAC-PapersOnLine, 52(10), 7–12. https://doi.org/10.1016/j. ifacol.2019.10.003

Gregor, T., Krajčovič, M., & Wiȩcek, D. (2017). Smart Connected Logistics. Procedia Engineering, 192, 265–270. https://doi.org/10.1016/j.proeng.2017.06.046

Hamel, C., Michaud, A., Thuku, M., Skidmore, B., Stevens, A., Nussbaumer-Streit, B., & Garritty, C. (2021). Defining rapid reviews: a systematic scoping review and thematic analysis of defi­nitions and defining characteristics of rapid reviews. Journal of Clinical Epidemiology, 129, 74–85. https://doi.org/10.1016/j.jclinepi.2020.09.041

Herterich, M. M., Uebernickel, F., & Brenner, W. (2015). The impact of cyber-physical systems on industrial services in manufacturing. Procedia CIRP, 30, 323–328. https://doi.org/10.1016/j.pro­cir.2015.02.110

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2021). Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics, 1(June), 58–75. https://doi. org/10.1016/j.cogr.2021.06.001

Klumpp, M. (2018). Automation and artificial intelligence in business logistics systems: human reac­tions and collaboration requirements. International Journal of Logistics Research and Appli­cations, 21(3), 224–242. https://doi.org/10.1080/13675567.2017.1384451

Mahmood, K., Karjust, K., & Raamets, T. (2021). Production Intralogistics Automation Based On 3D Simulation Analysis. Journal of Machine Engineering, 21(2), 102–115. https://doi.org/10.36897/ jme/137081

Metzler, M. J., & Metz, G. A. (2010). Analyzing the barriers and supports of knowledge translation using the PEO model. Canadian Journal of Occupational Therapy, 77(3), 151–158. https://doi. org/10.2182/cjot.2010.77.3.4

Min, H. (2010). Artificial intelligence in supply chain management: Theory and applications. International Journal of Logistics Research and Applications, 13(1), 13–39. https://doi. org/10.1080/13675560902736537

Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2021). UAVs for Industrial Applications: Identify­ing Challenges and Opportunities from the Implementation Point of View. Procedia Manufac­turing, 55, 183–190. https://doi.org/10.1016/j.promfg.2021.10.026

Ng, K. K. H., Chen, C. H., Lee, C. K. M., Jiao, J. (Roger), & Yang, Z. X. (2021). A systematic literature review on intelligent automation: Aligning concepts from theory, practice, and future perspec­tives. Advanced Engineering Informatics, 47(January). https://doi.org/10.1016/j.aei.2021.101246

Nota, G., Peluso, D., & Lazo, A. T. (2021). The contribution of Industry 4.0 technologies to facility management. International Journal of Engineering Business Management, 13, 1–14. https://doi. org/10.1177/18479790211024131

Pedan, M., Gregor, M., & Plinta, D. (2017). Implementation of Automated Guided Vehicle Sys­tem in Healthcare Facility. Procedia Engineering, 192, 665–670. https://doi.org/10.1016/j.pro­eng.2017.06.115

Ponis, S. T., & Efthymiou, O. K. (2020). Cloud and IoT Applications in Material Handling Automa­tion and Intralogistics. Logistics, 4(3). https://doi.org/10.3390/logistics4030022

Reynen, E., Robson, R., Ivory, J., Hwee, J., Straus, S. E., Pham, B., & Tricco, A. C. (2018). A retro­spective comparison of systematic reviews with same-topic rapid reviews. Journal of Clinical Epidemiology, 96, 23–34. https://doi.org/10.1016/j.jclinepi.2017.12.001

Schoepflin, D., Koch, J., Gomse, M., & Schüppstuhl, T. (2021). Smart Material Delivery Unit for the Production Supplying Logistics of Aircraft. Procedia Manufacturing, 55, 455–462. https://doi. org/10.1016/j.promfg.2021.10.062

Schröder, R., Aydemir, M., Glodde, A., & Seliger, G. (2016). Design and Verification of an Innova­tive Handling System for Electrodes in Manufacturing Lithium-ion Battery Cells. Procedia CIRP, 50, 641–646. https://doi.org/10.1016/j.procir.2016.04.198

Setiawan, F. B., Siva, P. M., Pratomo, L. H., & Riyadi, S. (2021). Design and Implementation of Smart Forklift for Automatic Guided Vehicle Using Raspberry Pi 4. Journal of Robotics and Control (JRC), 2(6), 508–514. https://doi.org/10.18196/jrc.26130 508

Tai, K., El-Sayed, A. R., Shahriari, M., Biglarbegian, M., & Mahmud, S. (2016). State of the art ro­botic grippers and applications. Robotics, 5(11), 1–20. https://doi.org/10.3390/robotics5020011

Thamer, H., Börold, A., Yoga Benggolo, A., & Freitag, M. (2018). Artificial intelligence in warehouse automation for flexible material handling. 9th International Scientific Symposium on Logistics. https://www.researchgate.net/publication/325853660_Artificial_intelligence_in_warehouse_ automation_for_flexible_material_handling

Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelli­gence in supply chain management: A systematic literature review. Journal of Business Re­search, 122(January 2021), 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009

Tranfield, D., Denyer, D., & Smart, P. (2003). Study on and instrument to assess knowledge supply chain systems using advanced kaizen activity in SMEs. British Journal of Management, 14, 207–222. https://doi.org/10.1080/16258312.2014.11517339

van Geest, M., Tekinerdogan, B., & Catal, C. (2021). Design of a reference architecture for devel­oping smart warehouses in industry 4.0. Computers in Industry, 124. https://doi.org/10.1016/j. compind.2020.103343

Weckenborg, C., & Spengler, T. S. (2019). Assembly Line Balancing with Collaborative Robots under consideration of Ergonomics: A cost-oriented approach. IFAC-PapersOnLine, 52(13), 1860– 1865. https://doi.org/10.1016/j.ifacol.2019.11.473

Yan, J., Zhang, M., & Fu, Z. (2019). An intralogistics-oriented Cyber-Physical System for workshop in the context of Industry 4.0. Procedia Manufacturing, 35, 1178–1183. https://doi.org/10.1016/j. promfg.2019.06.074

Yang, J. X., Li, L. D., & Rasul, M. G. (2021). Warehouse Management Models Using Artificial Intel­ligence Technology with Application at Receiving Stage – A Review. International Journal of Machine Learning and Computing, 11(3), 242–249. https://doi.org/10.18178/ijmlc.2021.11.3.1042

Yuan, X.-M. (2020). Industry 4.0 – Impact on Intelligent Logistics and Manufacturing. In T. Bányai & A. P. F. De Felice (Eds.), Intech. https://doi.org/10.5772/intechopen.90077

Zhang, L., Yan, Y., Hu, Y., & Ren, W. (2021). A dynamic scheduling method for self-organized AGVs in production logistics systems. Procedia CIRP, 104, 381–386. https://doi.org/10.1016/j. procir.2021.11.064

Zhang, Y. (2019). The application of artificial intelligence in logistics and express delivery. Journal of Physics: Conference Series, 1325. https://doi.org/10.1088/1742-6596/1325/1/012085


Association of Economists and Managers of the Balkans – UdEkoM Balkan
179 Ustanicka St, 11000 Belgrade, Republic of Serbia

LIMEN conference publications are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.