Rudolf Grรผnbichler – Graz University of Technology, Faculty of Mechanical Engineering and Economic Sciences, Institute of Business Economics and Industrial Sociology, Kopernikusgasse 24/II, 8010 Graz, Austria
Raphael Krebs – Graz University of Technology, Faculty of Mechanical Engineering and Economic Sciences, Institute of Business Economics and Industrial Sociology, Kopernikusgasse 24/II, 8010 Graz, Austria
7th International Scientific-Business Conference – LIMEN 2021 – Leadership, Innovation, Management and Economics: Integrated Politics of Research – SELECTED PAPERS, Online/virtual, December 16, 2021, published by the Association of Economists and Managers of the Balkans, Belgrade; Printed by: SKRIPTA International, Belgrade, ISBN 978-86-80194-53-0, ISSN 2683-6149, DOI: https://doi.org/10.31410/LIMEN.S.P.2021
Keywords:
Corporate insolvencies;
Corporate bankruptcy;
Artificial intelligence;
Small and Medium-sized
Companies
Abstract
Digitization in enterprises enables the application of artificial intelยญligence, especially machine learning. One area of use for artificial intelligence is in the creation of an insolvency forecast for companies. With a literature reยญview, the current status on the usage of artificial intelligence in insolvency foreยญcasting is presented. For this purpose, the two databases Scopus and Web of Science are searched for scientific papers on the topic of artificial intelligence and corporate insolvencies to get an up-to-date impression of the status quo. A particular focus is placed on small and medium-sized companies. It is shown that artificial intelligence methods provide better results compared to classical methods. The research reveals that the most important algorithms related to the prediction of potential corporate insolvency are artificial neural networks, decision trees and support vector machines as well as hybrid models.
Download file
LIMEN Conference
Creative Commons Nonย Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.ย
References
Abdelmoula, A. K. (2015). Bank Credit Risk Analysis with K-Nearest-Neighbor Classifier: Case of Tunisian Banks. Journal of Accounting and Management Information Systems, 14(1), 79โ106. https://ideas.repec.org/a/ami/journl/v14y2015i1p79-106.html
Addo, P. M., Guegan, D., & Hassani, B. (2018). Credit Risk Analysis Using Machine and Deep Learning Models. Risks 2018, Vol. 6, Page 38, 6(2), 38. https://doi.org/10.3390/ RISKS6020038
Alaka, H., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., & Ajayi, S. (2019). A Big Data Analytics Approach for Construction Firms Failure Prediction Models. IEEE Transactions on Engineering Management, 66(4), 689โ698. https://doi.org/10.1109/TEM.2018.2856376
Angelini, E., di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluaยญtion. Quarterly Review of Economics and Finance, 48(4), 733โ755. https://doi.org/10.1016/j. qref.2007.04.001
Arora, N., & Kaur, P. D. (2020). A Bolasso based consistent feature selection enabled ranยญdom forest classification algorithm: An application to credit risk assessment. Applied Soft Computing, 86, 105936. https://doi.org/10.1016/J.ASOC.2019.105936
Bahrammirzaee, A. (2020). A comparative survey of artificial intelligence applications in fiยญnance: artificial neural networks, expert system and hybrid intelligent systems, Neural Computing & Applications, 19, pp. 1165-1195.
Bao, Y., Hilary, G. & Ke, B. (2022). Artificial Intelligence and Fraud Detection, in: Babich, V., Birge, J. R. & Hilary, G. (eds) Innovative Technology at the Interface of Finance and Opยญerations. Springer Series in Supply Chain Management, vol. 11, Springer Gabler Verlag.
Bekhet, H. A., & Eletter, S. F. K. (2014). Credit risk assessment model for Jordanian commercial banks: Neural scoring approach. Review of Development Finance, 4(1), 20โ28. https://doi. org/10.1016/J.RDF.2014.03.002
Boughaci, D., Alkhawaldeh, A. A. K., Jaber, J. J., & Hamadneh, N. (2021). Classification with segmentation for credit scoring and bankruptcy prediction. Empirical Economics, 61(3), 1281โ1309. https://doi.org/10.1007/S00181-020-01901-8
Burda, A., Cudek, P., & Hippe, Z. S. (2013). Profiieseeker โ Early warning system for predicting economic situation of small and medium enterprises. 2013 6th International Conference on Human System Interactions, HSI 2013, 398โ400. https://doi.org/10.1109/HSI.2013.6577854
Chamoni, P. & Gluchowski, P. (2017). Business Analytics โ State of the Art, Controlling & Management Review, 4, 2017, pp. 8-17.
Ciampi, F., & Gordini, N. (2013). Small Enterprise Default Prediction Modeling through Artifiยญcial Neural Networks: An Empirical Analysis of Italian Small Enterprises. Journal of Small Business Management, 51(1), 23โ45. https://doi.org/10.1111/j.1540-627X.2012.00376.x
Ciampi, F., Giannozzi, A., Marzi, G., & Altman, E. I. (2021). Rethinking SME default predicยญtion: a systematic literature review and future perspectives. Scientometrics, 126(3), 2141โ 2188. https://doi.org/10.1007/s11192-020-03856-0
Di Vaio, A., Palladino, R., Hassan, R. & Escobar, O. (2020). Artificial Intelligence and business models in the sustainable development goals perspective: A systematic literature review, Journal of Business Research, 121, pp. 283-314.
Doubek, C., Exler, M. & Situm, M. (2016). Aktueller Stand von Frรผherkennungssystemen. Krisen-, Sanierungs- und Insolvenzberatung 5/2016, pp. 204โ210.
Fantazzini, D., & Figini, S. (2008). Random Survival Forests Models for SME Credit Risk Measurement. Methodology and Computing in Applied Probability 2008 11:1, 11(1), 29โ 45. https://doi.org/10.1007/S11009-008-9078-2
Gentsch, P. (2019). Business KI verรคndert Unternehmen und Mรคrkte, Controlling & Manageยญment Review, 4, 2019, pp. 24-32.
Giannopoulos, V., & Aggelopoulos, E. (2019). Predicting SME loan delinquencies during reยญcession using accounting data and SME characteristics: The case of Greece. Intelligent Systems in Accounting, Finance and Management, 26(2), 71โ82. https://doi.org/10.1002/ ISAF.1456
Gregova, E., Valaskova, K., Adamko, P., Tumpach, M., & Jaros, J. (2020). Predicting Finanยญcial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods. Sustainability 2020, Vol. 12, Page 3954, 12(10), 3954. https://doi. org/10.3390/SU12103954
Han, J. J. & Kim, H.-J. (2021). Stock price prediction using multiple valuation methods based on artificial neural networks for KOSDAQ IPO companies, Investment Analysts Journal, 50 (1), pp. 17-31.
Huang, X., Liu, X., & Ren, Y. (2018). Enterprise credit risk evaluation based on neural netยญwork algorithm. Cognitive Systems Research, 52, 317โ324. https://doi.org/10.1016/J. COGSYS.2018.07.023
J, U., Metawa, N., Shankar, K., & Lakshmanaprabu, S. K. (2020). Financial crisis prediction model using ant colony optimization. International Journal of Information Management, 50, 538โ556. https://doi.org/10.1016/J.IJINFOMGT.2018.12.001
Koropp, C. & Treitz, R. (2019). Performance Management mit Advanced Analytics, Controlling & Management Review, 6, pp. 32-38.
KSV1870, Insolvenzstatistik 2021, https://www.ksv.at/insolvenzstatistik/insolvenzstatisยญtik-2021-final, accessed on: 15.01.2022.
Li, K., Niskanen, J., Kolehmainen, M., & Niskanen, M. (2016). Financial innovation: Credit default hybrid model for SME lending. Expert Systems with Applications, 61, 343โ355. https://doi.org/10.1016/J.ESWA.2016.05.029
Lui, A. K. H., Lee, M. C. M. & Ngai, E. W. T. (2022). Impact of Artificial Intelligence inยญvestment on Firm Value, Annals of Operations Research, 308 (1-2), pp. 373-388. 10.1007/ s10479-020-03862-8
Malakauskas, A., & Lakstutiene, A. (2021). Financial distress prediction for small and mediยญum enterprises using machine learning techniques. Engineering Economics, 32(1), 4โ14. https://doi.org/10.5755/j01.ee.32.1.27382
Mertens, P. & Barbian, D. (2019). Erreicht Kรผnstliche Intelligenz auch das Controlling?, Conยญtrolling & Management Review, 4, pp. 8-17.
Mishra, A. N. & Pani, A. K. (2020). Business value appropriation roadmap for artificial intelยญligence, Vine Journal of Information and Knowledge Management Systems, 51 (3), pp. 353-368.
Mittal, S., Gupta, P., & Jain, K. (2011). Neural network credit scoring model for micro enterprise financing in India. Qualitative Research in Financial Markets, 3(3), 224โ242. https://doi. org/10.1108/17554171111176921/FULL/XML
Moscatelli, M., Parlapiano, F., Narizzano, S., & Viggiano, G. (2020). Corporate default foreยญcasting with machine learning. Expert Systems with Applications, 161, 113567. https://doi. org/10.1016/J.ESWA.2020.113567
Nanni, L., & Lumini, A. (2009). An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 36(2), 3028โ 3033. https://doi.org/10.1016/J.ESWA.2008.01.018
Oliveira, M. D. N. T., Ferreira, F. A. F., Pรฉrez-Bustamante Ilander, G. O., & Jalali, M. S. (2017). Integrating cognitive mapping and MCDA for bankruptcy prediction in small- and mediยญ um-sized enterprises. Journal of the Operational Research Society 2017 68:9, 68(9), 985โ 997. https://doi.org/10.1057/S41274-016-0166-3
Plastino, E. & Purdy, M. (2018). Game Changing value from Artificial Intelligence: eight stratยญegies, Strategy & Leadership, 46 (1), pp. 16-22.
Qu, Y., Quan, P., Lei, M., & Shi, Y. (2019). Review of bankruptcy prediction using machine learning and deep learning techniques. Procedia Computer Science, 162, 895โ899. https:// doi.org/10.1016/j.procs.2019.12.065
Reis, C., Ruivo, P., Oliveira, T. & Faroleiro, P. (2020). Assessing the drivers of machine learning business value, Journal of Business Research, 117, pp. 232-243.
Sigrist, F., & Hirnschall, C. (2019). Grabit: Gradient tree-boosted Tobit models for default preยญdiction. Journal of Banking & Finance, 102, 177โ192. https://doi.org/10.1016/J.JBANKยญFIN.2019.03.004
Snyder, H. (2019). Literature Review as a research methodology: An overview and guidelines, Journal of Business Research, 104, pp. 333-339.
Teles, G., Rodrigues, J. J. P. C., Rabรชlo, R. A. L., & Kozlov, S. A. (2021). Comparative study of support vector machines and random forests machine learning algorithms on credit operaยญtion. Software: Practice and Experience, 51(12), 2492โ2500. https://doi.org/10.1002/SPE.2842
Tsai, C. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications, 34(4), 2639โ2649. https://doi. org/10.1016/J.ESWA.2007.05.019
Tseng, F. M., & Hu, Y. C. (2010). Comparing four bankruptcy prediction models: Logit, quadยญratic interval logit, neural and fuzzy neural networks. Expert Systems with Applications, 37(3), 1846โ1853. https://doi.org/10.1016/j.eswa.2009.07.081
Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K. & Wanko, C. E. T. (2020). Influยญence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects, Business Process Management Journal, 26 (7), pp. 1893-1924.
Wang, G., & Ma, J. (2011). Study of corporate credit risk prediction based on integrating boostยญing and random subspace. Expert Systems with Applications, 38(11), 13871โ13878. https:// doi.org/10.1016/J.ESWA.2011.04.191
Wang, G., & Ma, J. (2012). A hybrid ensemble approach for enterprise credit risk assessment based on Support Vector Machine. Expert Systems with Applications, 39(5), 5325โ5331. https://doi.org/10.1016/J.ESWA.2011.11.003
Wang, G., Hao, J., Ma, J., & Jiang, H. (2011). A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications, 38(1), 223โ230. https://doi.org/10.1016/J. ESWA.2010.06.048
Wang, G., Ma, J., & Yang, S. (2014). An improved boosting based on feature selection for corยญporate bankruptcy prediction. Expert Systems With Applications, 41, 2353โ2361. https:// doi.org/10.1016/j.eswa.2013.09.033
Wang, G., Ma, J., Huang, L., & Xu, K. (2012). Two credit scoring models based on dual strateยญgy ensemble trees. Knowledge-Based Systems, 26, 61โ68. https://doi.org/10.1016/J.KNOยญSYS.2011.06.020
Webster, J. & Watson R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Litยญerature Review, MIS Quarterly, 26 (2), pp. xiii-xxiii.
Wright, R. W., Brand, R. A., Dunn, W. & Spindler, K. P. (2007). How to Write a Systematic Review, Clinical Orthopaedics and related Research, 455, pp. 23-29.
Zhu, Y., Xie, C., Sun, B., Wang, G. J., & Yan, X. G. (2016). Predicting Chinaโs SME Credit Risk in Supply Chain Financing by Logistic Regression, Artificial Neural Network and Hybrid Models. Sustainability 2016, Vol. 8, Page 433, 8(5), 433. https://doi.org/10.3390/SU8050433
Zhu, Y., Xie, C., Wang, G. J., & Yan, X. G. (2016). Predicting Chinaโs SME Credit Risk in Supยญply Chain Finance Based on Machine Learning Methods. Entropy 2016, Vol. 18, Page 195, 18(5), 195. https://doi.org/10.3390/E18050195
Zhu, Y., Xie, C., Wang, G. J., & Yan, X. G. (2017). Comparison of individual, ensemble and integrated ensemble machine learning methods to predict Chinaโs SME credit risk in supยญply chain finance. Neural Computing and Applications, 28, 41โ50. https://doi.org/10.1007/ s00521-016-2304-x
Zhu, Y., Zhou, L., Xie, C., Wang, G. J., & Nguyen, T. v. (2019). Forecasting SMEsโ credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. International Journal of Production Economics, 211, 22โ33. https://doi.org/10.1016/j. ijpe.2019.01.032