Mariana Chambino -Polytechnic Institute of SetΓΊbal, (ESCE/IPS), 2910-761 SetΓΊbal, Portugal
Rui Dias -Polytechnic Institute of SetΓΊbal, (ESCE/IPS), 2910-761 SetΓΊbal, Portugal
Paulo Alexandre – Polytechnic Institute of SetΓΊbal, (ESCE/IPS), 2910-761 SetΓΊbal, Portugal
Rosa GalvΓ£o – Polytechnic Institute of SetΓΊbal, (ESCE/IPS), 2910-761 SetΓΊbal, Portugal
Keywords:
Events of 2020 and 2022;
Energy metals;
Persistence;
Arbitrage
Abstract:Β The drive for sustainability and carbon emissions reduction is fueling the demand for clean energy solutions, with energy metals playing a crucial role in this transition. The environmental and ethical implications of mining and supplying these materials impact market dynamics, influΒenced by environmental regulations and consumer preferences for sustainΒable sources. This article aims to analyze the persistence of commodities, including gold (XAU), silver (XAG), platinum (XPT), aluminum (MAL3), nickΒel futures (NICKELc1), and copper futures (HGU3), from July 13, 2018, to July 11, 2023. The study divides the sample into four sub-periods: tranquil, COVΒID-19 pandemic, pre-conflict, and conflict (Russian invasion of Ukraine). ReΒsults indicate varying behaviors, with some commodities showing anti-perΒsistence, suggesting distinct patterns, while others exhibit efficiency or ranΒdom walk behavior. Understanding these patterns and market efficiency is valuable for informed investment strategies and risk management amid evolving global economic conditions.

Download file

LIMEN Conference
9th International Scientific-Business Conference – LIMEN 2023 – Leadership, Innovation, Management and Economics: Integrated Politics of Research – SELECTED PAPERS, Hybrid (Graz University of Technology, Graz, Austria), December 7, 2023
LIMEN Selected papers published by the Association of Economists and Managers of the Balkans, Belgrade, Serbia
LIMEN Conference 2023 Selected papers: ISBN 978-86-80194-79-0, ISSN 2683-6149, DOI: https://doi.org/10.31410/LIMEN.S.P.2023
Creative Commons NonΒ Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.Β
Suggested citation
Chambino, M., Dias, R., Alexandre, P., & GalvΓ£o, R. (2023). Eco-Metals Unveiled: A Deep Dive into Commodity Resilience. In V. Bevanda (Ed.), International Scientific-Business Conference – LIMEN 2023: Vol 9. Selected papers (pp. 141-149). Association of Economists and Managers of the Balkans. https://doi.org/10.31410/LIMEN.S.P.2023.141
References
Adekoya, O. B., & Oliyide, J. A. (2022). Commodity and financial marketsβ fear before and durΒing COVID-19 pandemic: Persistence and causality analyses. Resources Policy, 76. https://doi.org/10.1016/j.resourpol.2022.102598Β Β
Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249β272. https://doi.org/10.1016/S0261-5606(00)00048-6Β
Dias, R., Alexandre, P., Teixeira, N., & Chambino, M. (2023). Clean Energy Stocks: ResilΒient Safe Havens in the Volatility of Dirty Cryptocurrencies. Energies, 16(13). https://doi.org/10.3390/en16135232Β Β
Dias, R., Chambino, M., & Horta, N. H. (2023). Long-Term Dependencies in Central European Stock Markets: A Crisp-Set Analysis. Economic Analysis Letters. https://doi.org/10.58567/eal02010002Β
Dias, R., Horta, N., & Chambino, M. (2023). Clean Energy Action Index Efficiency: An AnalΒysis in Global Uncertainty Contexts. Energies, 16(9). https://doi.org/10.3390/en16093937Β
Dias, R., Teixeira, N., Alexandre, P., & Chambino, M. (2023). Exploring the Connection beΒtween Clean and Dirty Energy: Implications for the Transition to a Carbon-Resilient EconΒomy. Energies, 16(13), 4982. https://doi.org/10.3390/en16134982Β
Dias, R. M., Chambino, M., Teixeira, N., Alexandre, P., & Heliodoro, P. (2023). Balancing PortΒfolios with Metals: A Safe Haven for Green Energy Investors? https://doi.org/10.20944/preprints202309.1249.v1Β Β
Dickey, D., & Fuller, W. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057β1072. https://doi.org/10.2307/1912517Β
Dutta, A., Bouri, E., Das, D., & Roubaud, D. (2020). Assessment and optimization of clean energy equity risks and commodity price volatility indexes: Implications for sustainability. JourΒnal of Cleaner Production, 243, 118669. https://doi.org/10.1016/J.JCLEPRO.2019.118669Β
Erer, D., Erer, E., & GΓΌngΓΆr, S. (2023). The aggregate and sectoral time-varying market efΒficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outΒbreak and the global financial crisis. Financial Innovation, 9(1). https://doi.org/10.1186/s40854-023-00484-4Β Β
Fama, E. F. (1965). Random Walks in Stock Market Prices. Financial Analysts Journal, 21(5), 55-59. https://doi.org/10.2469/faj.v21.n5.55Β
Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383. https://doi.org/10.2307/2325486Β
Fama, E. F. (1991). Efficient Capital Markets: II. The Journal of Finance, 46(5), 1575. https://doi.org/10.2307/2328565Β Β
Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal of FiΒnancial Economics, 22(1), 3β25. https://doi.org/10.1016/0304-405X(88)90020-7Β
Guedes, E. F., Santos, R. P. C., Figueredo, L. H. R., da Silva, P. A., Dias, R. M. T. S., & ZeΒbende, G. F. (2022). Efficiency and Long-Range Correlation in G-20 Stock Indexes: A Sliding Windows Approach. Fluctuation and Noise Letters, 21(04). https://doi.org/10.1142/s021947752250033xΒ Β
Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and seΒrial independence of regression residuals. Economics Letters, 6(3), 255β259. https://doi.org/10.1016/0165-1765(80)90024-5Β Β
Memon, B. A., Yao, H., & Naveed, H. M. (2022). Examining the efficiency and herding beΒhavior of commodity markets using multifractal detrended fluctuation analysis. EmpiriΒcal evidence from energy, agriculture, and metal markets. Resources Policy, 77. https://doi.org/10.1016/j.resourpol.2022.102715Β Β
Mokni, K., & Youssef, M. (2020). Empirical analysis of the cross-interdependence between crude oil and agricultural commodity markets. Review of Financial Economics, 38(4). https://doi.org/10.1002/rfe.1096Β
Santana, T. P., Horta, N., Revez, C., Dias, R. M. T. S., & Zebende, G. F. (2023). Effects of Interdependence and Contagion on Crude Oil and Precious Metals According to ΟDCΒCA: A COVID-19 Case Study. Sustainability (Switzerland), 15(5). https://doi.org/10.3390/su15053945Β Β
Wang, H., & Jia, N. (2019). Multifractal analysis of the multivariate cross-correlation between metal futures and spot markets in China. Xitong Gongcheng Lilun Yu Shijian/System EnΒgineering Theory and Practice, 39(9). https://doi.org/10.12011/1000-6788-2018-1340-13Β
Wang, Y., Bouri, E., Fareed, Z., & Dai, Y. (2022). Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine. Finance Research Letters, 49, 103066.Β
Zebende, G. F., Santos Dias, R. M. T., & de Aguiar, L. C. (2022). Stock market efficiency: An inΒtraday case of study about the G-20 group. Heliyon, 8(1), e08808. https://doi.org/10.1016/j.heliyon.2022.e08808Β Β