Mariana Chambino -Polytechnic Institute of Setรบbal, (ESCE/IPS), 2910-761 Setรบbal, Portugal
Rui Dias -Polytechnic Institute of Setรบbal, (ESCE/IPS), 2910-761 Setรบbal, Portugal
Paulo Alexandre – Polytechnic Institute of Setรบbal, (ESCE/IPS), 2910-761 Setรบbal, Portugal
Rosa Galvรฃo – Polytechnic Institute of Setรบbal, (ESCE/IPS), 2910-761 Setรบbal, Portugal
Keywords:
Events of 2020 and 2022;
Energy metals;
Persistence;
Arbitrage
Abstract:ย The drive for sustainability and carbon emissions reduction is fueling the demand for clean energy solutions, with energy metals playing a crucial role in this transition. The environmental and ethical implications of mining and supplying these materials impact market dynamics, influยญenced by environmental regulations and consumer preferences for sustainยญable sources. This article aims to analyze the persistence of commodities, including gold (XAU), silver (XAG), platinum (XPT), aluminum (MAL3), nickยญel futures (NICKELc1), and copper futures (HGU3), from July 13, 2018, to July 11, 2023. The study divides the sample into four sub-periods: tranquil, COVยญID-19 pandemic, pre-conflict, and conflict (Russian invasion of Ukraine). Reยญsults indicate varying behaviors, with some commodities showing anti-perยญsistence, suggesting distinct patterns, while others exhibit efficiency or ranยญdom walk behavior. Understanding these patterns and market efficiency is valuable for informed investment strategies and risk management amid evolving global economic conditions.
Download file
LIMEN Conference
9th International Scientific-Business Conference – LIMEN 2023 – Leadership, Innovation, Management and Economics: Integrated Politics of Research – SELECTED PAPERS, Hybrid (Graz University of Technology, Graz, Austria), December 7, 2023
LIMEN Selected papers published by the Association of Economists and Managers of the Balkans, Belgrade, Serbia
LIMEN Conference 2023 Selected papers: ISBN 978-86-80194-79-0, ISSN 2683-6149, DOI: https://doi.org/10.31410/LIMEN.S.P.2023
Creative Commons Nonย Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.ย
Suggested citation
Chambino, M., Dias, R., Alexandre, P., & Galvรฃo, R. (2023). Eco-Metals Unveiled: A Deep Dive into Commodity Resilience. In V. Bevanda (Ed.), International Scientific-Business Conference – LIMEN 2023: Vol 9. Selected papers (pp. 141-149). Association of Economists and Managers of the Balkans. https://doi.org/10.31410/LIMEN.S.P.2023.141
References
Adekoya, O. B., & Oliyide, J. A. (2022). Commodity and financial marketsโ fear before and durยญing COVID-19 pandemic: Persistence and causality analyses. Resources Policy, 76. https://doi.org/10.1016/j.resourpol.2022.102598ย ย
Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249โ272. https://doi.org/10.1016/S0261-5606(00)00048-6ย
Dias, R., Alexandre, P., Teixeira, N., & Chambino, M. (2023). Clean Energy Stocks: Resilยญient Safe Havens in the Volatility of Dirty Cryptocurrencies. Energies, 16(13). https://doi.org/10.3390/en16135232ย ย
Dias, R., Chambino, M., & Horta, N. H. (2023). Long-Term Dependencies in Central European Stock Markets: A Crisp-Set Analysis. Economic Analysis Letters. https://doi.org/10.58567/eal02010002ย
Dias, R., Horta, N., & Chambino, M. (2023). Clean Energy Action Index Efficiency: An Analยญysis in Global Uncertainty Contexts. Energies, 16(9). https://doi.org/10.3390/en16093937ย
Dias, R., Teixeira, N., Alexandre, P., & Chambino, M. (2023). Exploring the Connection beยญtween Clean and Dirty Energy: Implications for the Transition to a Carbon-Resilient Econยญomy. Energies, 16(13), 4982. https://doi.org/10.3390/en16134982ย
Dias, R. M., Chambino, M., Teixeira, N., Alexandre, P., & Heliodoro, P. (2023). Balancing Portยญfolios with Metals: A Safe Haven for Green Energy Investors? https://doi.org/10.20944/preprints202309.1249.v1ย ย
Dickey, D., & Fuller, W. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057โ1072. https://doi.org/10.2307/1912517ย
Dutta, A., Bouri, E., Das, D., & Roubaud, D. (2020). Assessment and optimization of clean energy equity risks and commodity price volatility indexes: Implications for sustainability. Jourยญnal of Cleaner Production, 243, 118669. https://doi.org/10.1016/J.JCLEPRO.2019.118669ย
Erer, D., Erer, E., & Gรผngรถr, S. (2023). The aggregate and sectoral time-varying market efยญficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outยญbreak and the global financial crisis. Financial Innovation, 9(1). https://doi.org/10.1186/s40854-023-00484-4ย ย
Fama, E. F. (1965). Random Walks in Stock Market Prices. Financial Analysts Journal, 21(5), 55-59. https://doi.org/10.2469/faj.v21.n5.55ย
Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383. https://doi.org/10.2307/2325486ย
Fama, E. F. (1991). Efficient Capital Markets: II. The Journal of Finance, 46(5), 1575. https://doi.org/10.2307/2328565ย ย
Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal of Fiยญnancial Economics, 22(1), 3โ25. https://doi.org/10.1016/0304-405X(88)90020-7ย
Guedes, E. F., Santos, R. P. C., Figueredo, L. H. R., da Silva, P. A., Dias, R. M. T. S., & Zeยญbende, G. F. (2022). Efficiency and Long-Range Correlation in G-20 Stock Indexes: A Sliding Windows Approach. Fluctuation and Noise Letters, 21(04). https://doi.org/10.1142/s021947752250033xย ย
Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and seยญrial independence of regression residuals. Economics Letters, 6(3), 255โ259. https://doi.org/10.1016/0165-1765(80)90024-5ย ย
Memon, B. A., Yao, H., & Naveed, H. M. (2022). Examining the efficiency and herding beยญhavior of commodity markets using multifractal detrended fluctuation analysis. Empiriยญcal evidence from energy, agriculture, and metal markets. Resources Policy, 77. https://doi.org/10.1016/j.resourpol.2022.102715ย ย
Mokni, K., & Youssef, M. (2020). Empirical analysis of the cross-interdependence between crude oil and agricultural commodity markets. Review of Financial Economics, 38(4). https://doi.org/10.1002/rfe.1096ย
Santana, T. P., Horta, N., Revez, C., Dias, R. M. T. S., & Zebende, G. F. (2023). Effects of Interdependence and Contagion on Crude Oil and Precious Metals According to ฯDCยญCA: A COVID-19 Case Study. Sustainability (Switzerland), 15(5). https://doi.org/10.3390/su15053945ย ย
Wang, H., & Jia, N. (2019). Multifractal analysis of the multivariate cross-correlation between metal futures and spot markets in China. Xitong Gongcheng Lilun Yu Shijian/System Enยญgineering Theory and Practice, 39(9). https://doi.org/10.12011/1000-6788-2018-1340-13ย
Wang, Y., Bouri, E., Fareed, Z., & Dai, Y. (2022). Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine. Finance Research Letters, 49, 103066.ย
Zebende, G. F., Santos Dias, R. M. T., & de Aguiar, L. C. (2022). Stock market efficiency: An inยญtraday case of study about the G-20 group. Heliyon, 8(1), e08808. https://doi.org/10.1016/j.heliyon.2022.e08808ย ย